Docker
Docker
Overview
This Docker Compose setup provides a multi-service environment for the kgrag-mcp-server
application from image ghcr.io/gzileni/kgrag_mcp_server:main
, including logging and monitoring tools.
Services
- kgrag-mcp-server: Main application server.
- Ports exposed:
8000
: Application6379
: Redis6333
,6334
: QDrant7474
: HTTP (Neo4j)7687
: Bolt (Neo4j)
- Environment variables:
APP_ENV
,LLM_MODEL_TYPE
,OPENAI_API_KEY
,AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
,AWS_REGION
,AWS_BUCKET_NAME
,COLLECTION_NAME
,LLM_MODEL_NAME
,MODEL_EMBEDDING
,LLM_URL
,LOKI_URL
- Volumes:
qdrant_data:/qdrant/storage:z
redis_data:/data
neo4j_data:/var/lib/neo4j/data
- Network:
- Connected to
kgrag-mcp-network
- Connected to
- Ports exposed:
- kgrag-mcp-loki: Grafana Loki instance for log aggregation. Exposes port
3100
. - kgrag-mcp-promtail: Promtail agent for collecting and shipping logs to Loki.
- kgrag-mcp-grafana: Grafana dashboard for monitoring and visualizing logs. Exposes port
3000
.
Description of variables
-
APP_ENV
Application environment. Typical values:production
,development
,staging
. Affects logging, configuration and runtime behavior. -
USER_AGENT
Identifier used in HTTP requests (User-Agent). Use a descriptive value to help trace requests. -
OPENAI_API_KEY
API key for OpenAI (or compatible provider). Secret: do not commit to a public repository. Format: alphanumeric string. -
AWS_ACCESS_KEY_ID
AWS access key ID for S3 operations. Secret: do not commit. Format: string. -
AWS_SECRET_ACCESS_KEY
AWS secret access key for S3. Secret: do not commit. Format: string. -
AWS_REGION
AWS region where the bucket resides (e.g.eu-central-1
). -
AWS_BUCKET_NAME
Name of the S3 bucket used for storing data/assets. -
COLLECTION_NAME
Name of the collection used in Qdrant or another vector DB to store vectors. -
VECTORDB_SENTENCE_TYPE
Type of embedding model to use for Qdrant:local
(local model) orhf
(Hugging Face automatic download). Iflocal
, also setVECTORDB_SENTENCE_PATH
; ifhf
, setVECTORDB_SENTENCE_MODEL
. -
VECTORDB_SENTENCE_MODEL
Name of the embedding model (e.g.BAAI/bge-small-en-v1.5
or others listed in the file). Forhf
it will be downloaded from Hugging Face; ignored forlocal
. -
LLM_MODEL_TYPE
Type of LLM provider: supported values in the project e.g.openai
,ollama
,vllm
. Determines the invocation method. -
LLM_URL
Endpoint of the LLM service (e.g.http://localhost:11434
for Ollama or a custom API URL). -
LLM_MODEL_NAME
Name of the LLM model to use on the selected provider (e.g.tinyllama
,gpt-4.1-mini
, etc.). -
MODEL_EMBEDDING
Name of the embedding model for general use (e.g.nomic-embed-text
,text-embedding-3-small
). Must be compatible with the chosen provider. -
NEO4J_USERNAME
Username for connecting to Neo4j. -
NEO4J_PASSWORD
Password for Neo4j. Secret: do not commit. -
NEO4J_AUTH
Authentication string for Neo4j, typically in the formatusername/password
. Some clients require this combined form. -
REDIS_URL
Redis connection URL, e.g.redis://host:port
. May include credentials if needed (be cautious with security). -
REDIS_HOST
Redis host (used ifREDIS_URL
is not used). -
REDIS_PORT
Redis port (e.g.6379
). -
REDIS_DB
Redis database index to use (integer). -
APP_VERSION
Application/image version (semver or free-form string) used for tracking/telemetry. -
A2A_CLIENT
URL of the agent-to-agent (A2A) client used for internal agent communications, e.g.http://kgrag_agent:8010
.
Security and operational notes:
- Do not place keys and secrets in public repositories. Use a secret manager or an .env file excluded from VCS.
- Some variables (embedding/LLM models) must be compatible with the local runtime or remote services configured; check the providers’ documentation if you encounter loading errors.
- If you use
VECTORDB_SENTENCE_TYPE=local
, set the local model path via the dedicated variable (not included in the example file). - Ensure
NEO4J_AUTH
matches the actual credentials used by the Neo4j container and that the host/container ports in the compose file are correct. - For Redis in containerized environments prefer the service host on the overlay network (e.g.
redis://redis:6379
) rather thanlocalhost
. - Change access defaults (e.g. Grafana anonymous admin) before exposing to production.
- Always rotate keys that have been leaked or accidentally published.
Usage
- Clone the repository and navigate to the
docker
directory. - Create a
.env
file with the required environment variables. - Start the services:
docker compose up -d
- Access:
- Application: http://localhost:8000
- Grafana: http://localhost:3000
- Redis: localhost:6379
- QDrant: localhost:6333, localhost:6334
- Neo4j: http://localhost:7474 (HTTP), bolt://localhost:7687 (Bolt)
Environment Variables
Set the following variables in your .env
file:
APP_ENV
LLM_MODEL_TYPE
OPENAI_API_KEY
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_REGION
AWS_BUCKET_NAME
COLLECTION_NAME
LLM_MODEL_NAME
MODEL_EMBEDDING
LLM_URL
LOKI_URL
(default:http://kgrag-mcp-loki:3100/loki/api/v1/push
)
Volumes
qdrant_data
: Persists QDrant data.redis_data
: Persists Redis data.neo4j_data
: Persists Neo4j data.grafana-data
: Persists Grafana data.loki-log
: Used by Promtail for log collection.
Network
All services are connected via the custom bridge network kgrag-mcp-network
(subnet: 172.16.99.0/24
).
Monitoring
Grafana is pre-configured to use Loki as the default data source for log visualization.